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Abstract. We study wavenumber locking and pattern formation resulting from
weak spatially periodic one-dimensional forcing of two-dimensional systems.
We consider systems that produce stationary or traveling stripe patterns when
unforced and apply forcing aligned with the stripes. Forcing at close to twice
the pattern wavenumber selects, stabilizes, or creates resonant stripes locked at
half the forcing wavenumber. If the mismatch between the forcing and pattern
wavenumber is high we find that the pattern still locks but develops a wave vector
component perpendicular to the forcing direction and forms rectangular and
oblique patterns. When the unforced system supports traveling waves, resonant
rectangular patterns remain stationary but oblique patterns travel in a direction
orthogonal to the traveling waves.
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1. Introduction

Periodic forcing of pattern forming systems is a means of diversifying and controlling
pattern formation phenomena. Forcing drives new pattern instabilities and allows control
of patterns through frequency or wavenumber locking. Many types of forced systems
have been studied, including spatially uniform time-periodic forcing in systems with a
Hopf bifurcation [1]-[4], spatially periodic time-independent forcing of systems with finite-
wavenumber instabilities [5]-[15], different cases of traveling-wave forcing [16]-[18], and
multifrequency forcing [19]. Various resonances have been considered, particularly in the
temporal forcing case. Resonances, n : 1, corresponding to forcing frequencies about n times
larger than the Hopf frequencies of the unforced systems, have been studied with n = 1 [20, 21],
n =21[22]-[29], n =3 [30, 31], and n =4 [32]-[34].

Of these resonances, the 2 : 1 temporal forcing produces a particularly rich diversity of
instabilities. In addition to uniform phase instabilities of the oscillating state, which allow
multiphase patterns, and the instabilities associated with the domain walls that separate different
phases [2, 26], [35]-[37], the forcing also induces a primary Turing-like instability of the
stationary uniform state (hereafter the ‘zero state’), which coincides with the Hopf bifurcation
in a Hopf—Turing codimension-two point [24, 28, 38]. This instability not only leads to richer
spatiotemporal dynamics, it also extends the frequency locking range outside the locking
boundaries of uniform oscillations (the 2 : 1 Arnold tongue) [27].

In this paper, we consider systems that go through finite-wavenumber instabilities to
periodic-stripe patterns and that are subjected to one-dimensional spatial forcing. Spatial
forcing has been studied in fluid systems [5, 6, 10, 11, 15], chemical reactions [12], and in a
variety of optical systems, particularly in the context of localized structures. Examples include
lasers with saturable absorbers [39], photonic crystal films with Kerr nonlinearity under Fano
resonance conditions [40], and a passive optical cavity containing a photonic crystal and a purely
absorptive two-level medium [41].

Despite the variety of studies some basic questions related to pattern formation and
wavenumber locking have not been explored. How is the wavenumber locking range of periodic-
stripe patterns affected by the forcing intensity? Can the applied spatial forcing induce a primary
instability of the zero state, similar to the Turing instability in the case of temporally forced
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oscillatory systems? What are the implications of this instability on wavenumber locking and
pattern diversity? If the unforced system supports traveling waves, how does wavenumber
locking affect the traveling speed and direction?

Addressing these questions leads to some expected results, such as the widening of the
stability range of stripe patterns, along with a few surprising results. Unlike the traditional view
of narrow resonance tongues for weak forcing, the freedom of the system to respond in two
spatial dimensions allows for a wide resonance range of order unity even for weak forcing. We
also find, for the case of low-speed traveling waves, that the forcing can either induce stationary
patterns, or patterns that travel in a direction orthogonal to the traveling direction in the unforced
system.

Some of the results presented here have been briefly reported in [42].

2. The forced Swift-Hohenberg (SH) equation: two primary instabilities

To study periodic forcing and wavenumber locking we analyze universal normal-form equations
near instability points of the zero state. Our results are therefore expected to apply to a wide
range of physical systems. We derive the normal-form equations using the SH equation [43]
modified to include spatial forcing and advection. This allows us to test the predictions of the
normal-form analyses with numerical solutions of the modified SH equation. The SH equation
is also directly relevant to several optical systems; it has been derived for a passive optical
cavity [44, 45], for a degenerate optical parametric oscillator [46, 47], and for a degenerate
optical parametric oscillator with a saturable absorber [48].

We consider the SH equation with up-down symmetry, to guarantee the destabilization
of the zero state in a finite-wavenumber instability to periodic-stripe patterns. We add a term
representing time-independent one-dimensional periodic forcing with wave vector ky = kX, and
a term advecting the patterns in the x-direction. The specific form of the forced SH equation we
study is

u, =le+ycos (kex)]u — cu, — (V? +k§)2u —u’, (1)

where y > 0 is the forcing strength and c is the advection speed of the unforced stripe pattern.
For now we focus on unforced systems that support stationary patterns and set ¢ = 0. Forcing
systems that support traveling patterns will be considered in section 3. We find it convenient to
introduce a wavenumber detuning parameter

= — — ko, 2
v > 0 (2)

and express the results in terms of v rather than ;. In the following we will consider small
values of v, implying proximity to a 2 : 1 resonance, as well as large negative values of order k.

In the absence of forcing (y = 0) the zero state, u = 0, loses stability, as € becomes positive,
to a band of stationary periodic-stripe solutions centered at ko = (kg, 0) (assuming the spatial
periodicity is in the x-direction). The band of stable periodic-stripe solutions is limited by two
secondary instabilities: the transverse zigzag instability at k = k¢, and the longitudinal Eckhaus
instability at k = ko ++/€/3/2ko [49]. Figure 1 shows the patterns that develop as ¢ is increased
from negative to positive values and starting with periodic perturbations about the zero state
with wavenumbers slightly smaller (figure 1(a)) and slightly larger (figure 1(b)) than k. In both
cases periodic-stripe patterns develop, but in the former case a secondary zigzag instability of
the stripe solution leads to modulated stripes.

New Journal of Physics 11 (2009) 063016 (http://www.njp.org/)


http://www.njp.org/

4 I0P Institute of Physics () DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

e

N

CRIANEENN
Illllllllllllllll
iinniiil

X

Figure 1. Patterns in the SH equation (1) with and without spatial periodic
forcing. Without forcing (y = 0) and for ¢ > 0 periodic patterns are formed
with preferred wavenumber k(. (a) For an initial condition with wavenumber
slightly smaller (k =0.9k,) than k, a secondary zigzag instability produces
modulated stripes. (b) For an initial condition with wavenumber slightly larger
than ko (k = 1.1ky) the periodic-stripe solution is in the stable band. Adding
forcing, with y = 0.1, changes the picture. (c) Starting with a resonant solution
of wavenumber k = 0.9ky and v = —0.1 the forcing stabilizes the pattern and no
zigzag instability is formed. (d) Starting with a resonant solution of wavenumber
k =1.1ky and v =0.1 the resonant solution persists. (¢) With random initial
conditions and v = —0.1 rectangular patterns form with k, = 0.9k, and k, > 0.
(f) With random initial conditions and v = 0.1 no resonant solution develops and
the stripe pattern forms at the most unstable wavenumber ky, = 1. Parameters:
ko=1,6=0.05,c=0and x =y =10, 20r].
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With the presence of weak forcing (0 <y < 1) in (1) the picture is different. For
small detuning (Jv| <« 1) and starting with periodic perturbations about the zero state with
wavenumbers that coincide with the forcing wavenumber we still get periodic-stripe solutions
(figures 1(c) and (d)), except that now the forcing stabilizes the stripes at negative detuning
and the zigzag instability does not develop. However, starting with random perturbations we
get a completely different behavior; while we still get stripes in the case of positive detuning
(figure 1(f)), for negative detuning rectangular patterns appear (figure 1(e)), suggesting the
existence of a primary instability of the zero state that is induced by the forcing, and
multistability ranges of one- and two-dimensional patterns.

This situation is similar to that found in periodically forced oscillatory systems where in
addition to the existing Hopf bifurcation to uniform oscillations, the forcing also produces
a primary instability of the zero state that breaks spatial translational symmetry. In the
present case, in addition to the finite-wavenumber (stripe) instability, the forcing induces a
primary instability of the zero state that breaks translational symmetry to form two-dimensional
rectangular patterns.

3. Wavenumber locking of one-dimensional patterns

We first study the one-dimensional response to forcing in the form of stationary stripe solutions
and address questions of stability and wavenumber locking. We assume that the forcing is weak
and that the zero state of the unforced system is close to the instability threshold to stripe
solutions. In the forced SH equation (1), these assumptions correspond to small values of €
and y. Such solutions can be approximated by the form

ulx, v, 1) = Ax, y, t)e™>* ycc., 3)

where ‘c.c.’ stands for the complex conjugate. Using standard multiple scale analysis [49] the
following normal-form equation for the complex-valued amplitude A is obtained from (1):

A, = A — (2ikod, —2k0v+8§)2A—3|A|2A+gA*, 4)
where the star denotes the complex conjugate. This is the Newell-Whitehead—Segel
equation [50, 51], generalized to include the effect of spatial periodic forcing. A similar equation
has been studied in the context of defect dynamics in roll patterns [52]. We define resonant
stripe patterns as stable patterns whose wave vector components in the x-direction are locked
to exactly half the forcing wavenumber. Such patterns are given by solutions of (4) that are
independent of x. The simplest solutions of this kind are the stationary uniform solutions

As= ii\/e — Qkov)2+ L 5)
+ \/g 0 2»
A :ii\/e—(zk 2L ©6)
+i \/g 0 2
The solutions AL are the first to appear as ¢ is increased (at ¢ = —y /2 +4kjv?), and are

linearly stable to uniform perturbations. The solutions A.; are always unstable and will not
be considered further.
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To find the stability of the solutions A to nonuniform perturbations we use the perturbation
ansatz

SA = a+(t)ei(QXX+QyY) +a7(t)*e*i(QXX+ny‘). (7)

Inserting (7) in (4), linearizing in a4, and projecting onto exp[i(Q.x + Q,y)] we obtain the

linear system
a_) D C,D+y)\a_)’

where Cy = (£2koQ, + Q5 +2kov)* — (2kov)* and D =& — (2kov)*. The eigenvalues of this
system are

C.+C- C,—C.)?
0:(Qy, Qy) =—D—y — ; i\/D2+%- ©)

The threshold for a longitudinal, or Eckhaus, instability is obtained by setting max(o,,0_) =0
with 0, =0;

e = —4ko|v|/y + 12k3v?, |v|>§. (10)
0

Similarly, the threshold for a transverse, or zigzag, instability is obtained by setting
max(o,,o_) =0 with Q, =0;

VY 2.2

2% or &z = 6k; 5 (11)
Note that for y = 0 the second zigzag threshold is always within the zigzag instability range
dictated by the first threshold (except for v = 0 where they coincide) and therefore is often
ignored.

The Eckhaus and zigzag instability boundaries for the unforced and forced systems are
shown in figures 2(a) and (b), respectively. The shaded areas denote the range of stable stripe
solutions. One obvious effect of the forcing is the extension of the stability range. Note, however,
the different meaning of v in the unforced and forced systems. In the unforced system v is an
uncontrolled quantity, selected by the system dynamics, that represents a wavenumber within the
band of coexisting periodic solutions at a given ¢. In the forced system v is a control parameter
of the forcing. The values of v that correspond to stable periodic solutions for a given ¢ (shaded
area in figure 2(b)) define the range of wavenumber locking.

Superimposing the existence and stability curves of stripe solutions of the unforced system
with those of the forced system, we may distinguish among three regions, indicated by the
different shades in figure 2(c), with different modes of wavenumber locking: (region I) selection
of a stable solution of the unforced system with a resonant wavenumber k¢/2, (region II)
stabilization of an unstable solution of the unforced system with a resonant wavenumber,
and (region III) creation of a new stable resonant solution. We have tested these modes with
numerical solutions of the SH equation (1). In region I (selection), we started with random initial
conditions and found resonant domains with wavenumber k;/2 separated by front structures. In
region II (stabilization), we started with a resonant unstable solution of the unforced system,
with wavenumber k¢/2, and found a stable resonant solution with that wavenumber. In region III
(creation), we started from a periodic initial condition with a wavenumber k¢/2 and found an
asymptotic resonant solution with that wavenumber.

4

Vz =
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Figure 2. Existence and stability of periodic-stripe solutions of (1) for (a)
the unforced (y = 0) case and (b) the forced (y > 0) case. The outer curves
are existence boundaries while the inner curves denote the stability thresholds
to Eckhaus and zigzag-type perturbations. Part (c) shows (dashed curves) the
existence and stability curves of the unforced system that were displayed in part
(a), superimposed on the stability domain of the forced system. These curves
divide the stability domain into three different regions of wavenumber locking.
Parameters: c =0, kp =1 and y = 0.1 in (b) and (c).

It is instructive to compare these results with frequency locking in temporally forced
oscillating systems. Temporally forced single oscillators share the third type of locking
(wavenumber or frequency adjustments by creation of new solutions), but not the first two types,
which are inherently related to the appearance of bands of modes in spatially extended system.
These two locking types, however, should be found in temporally forced spatially extended
oscillating systems. Selection and stabilization of spatial modes in this case are expected to be
determined by the dispersion relation associated with the oscillatory instability.

New Journal of Physics 11 (2009) 063016 (http://www.njp.org/)


http://www.njp.org/

8 I0P Institute of Physics () DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

4. Wavenumber locking of two-dimensional patterns

The effect of the forcing is not limited to modifying the existence and stability range of stripe
solutions (in the x-direction). As figure 1(e) demonstrates, the forcing can also create a new
mode that grows from the zero state and produces two-dimensional rectangular patterns. To
study the growth of this mode and the stability properties and wavenumber locking of the
resulting patterns we conduct a weakly nonlinear analysis assuming that ¢ and y are small.
We approximate a solution of (1) in the form

u = gelkexthon) 4 peikex=ky) 4 ¢ ¢, (12)

where k, =ko+v =k¢/2, and k, = /—2kov — v2. With this choice k = /k§+k§ = ko, the

optimal wavenumber that minimizes the Lyapunov function of the SH equation. In appendix A,
we derive coupled equations for the amplitudes a and b assuming they vary weakly in space and
time. The equations are

G, = e +4(k, 0y, +k,d,)%a + gé* —3(|al*a+2|bl*a), (13a)
b, = eb+4(k,d, —k,d,)?b+ ga* —3(1b|*b +2|a|*b). (13b)

Since (1) is invariant with respect to the transformation ky — —k¢ we can restrict our analysis
to k¢ > 0, or to v values satisfying v > —k(. Similar amplitude equations have been studied
in the context of wavelength competition in convective systems [53], and in the context of
time-periodic forcing of spatially extended oscillatory systems [1]. In the latter context the
counterparts of rectangular and oblique pattern solutions are standing and traveling wave
solutions.

Equations (13) were derived for the forced SH equation (1). In the following we will
consider a more general form that can also describe other systems. Rescaling the space
coordinates according to ¥ = x /4 and § = y/4, and the amplitudes according to a = +/3a and
b = +/3b, we eliminate the coefficients of the spatial derivative and the uncoupled cubic terms
We are still left with the (equal) coefficients of the cubic terms that couple the two modes that
are specific to the SH equation, and denote them by A. We thus consider the system

a, = ea+ (k0 +k,3,)%a + gb* — (laPa+rbla), (14a)

b, = eb+ (k.d, —k,d,)*b + ga* — (|b]*b +Alal*b), (14b)

where for the specific case of the forced SH equation (1) A = 2.

We first look for stationary homogeneous solutions of (14). By using the polar forms,
a = psexp(ia) and b = pyexp(iB), we find the following equivalent dynamic equations for
space-independent solutions:

14
Par = 800 = (0 +20,)Pa+ 5 P COS(), (15a)
14
b = €0p — (0F + 1p2) Py + 5 Pa COS(9), (15b)
o =-x <@+&) sin(g), (16)
2 Pa  Pb
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and

Vv, = —g (@ - &) sin(p), (17)
Pa Pb

where ¢ = o+ 8 and ¥ = o — B. Note first that the four-dimensional dynamics can be reduced
to three dimensions; ¥ is determined once p,, p, and ¢ are known. Besides the trivial solution
pa = pp =0, that corresponds to the zero state u =0 of (1), equations (15) and (16) admit
constant solutions of the form p, = p.9, P» = Pro, ¢ = nm, n =0, 1. Linearizing (16) around
this solution we find

5o = (=1L (% + @> 5¢. (18)
2 Pay Py

Since y, p, and p, are non-negative any constant solution with n =1 or ¢ = 7 is unstable

regardless of the p, and p, dynamics. We will therefore not consider these solutions any further.

Inserting ¢ = 0 in (17) we find that v is constant, implying that the phases « and 8 = —« are

constants independent of time. With ¢ = 0 in (15) we obtain the two-dimensional dynamical

system

Y

Par = 800 = (05 +20,)Pa+ 5 v, (19a)
14

Poe =805 = (0, + AP) P+ T P (19b)

Equations (19) admit the constant solution

Pa = Pb = Po, (20

_ e+y/2
Po=N\ T 2D

In terms of the amplitudes a and b this form gives the one-parameter family of solutions

where

ap = po exp (i), by = poexp (—ia). (22)

These solutions exist for ¢ > —y /2 and —2k; < v < 0 (in order for k,, to be real), and describe
rectangular patterns. The undetermined constant phase « is associated with the continuous
translation symmetry in the y-direction, which is not broken by the forcing.

In addition (19) admit the constant solutions

Pa = P+,  Pb= P> (23)
where
e+ 1/ 82 — ﬁ
px = > : (24)
In terms of the amplitudes a and b this form gives the one-parameter family of solutions
ax = p exp (ia), (25a)
by = pzexp (—ia), (25b)
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Figure 3. Bifurcation diagrams for solutions of the amplitude equations (15)
for (a) A =2, the value obtained for the forced SH equation, and (b) A =1.2
(y = 0.1). Rectangular patterns (p,) appear at ¢ = —y /2 (see (21)), and become
unstable to oblique patterns (p+) at € = y /(A — 1) (see (24)). Values of A closer
to 1 shift the instability of rectangular patterns to higher ¢ values.

where « is again an arbitrary constant. These solutions exist fore >y /(A — 1) and —2ky < v <O.
They break the symmetry, a — b, b — a, of (15), and describe oblique patterns.

We now examine the linear stability of these solutions to uniform perturbations. We have
also studied the stability to nonuniform perturbations and found that the stability ranges coincide
with those for uniform perturbations [54]. Linearizing (19) around a constant solution p, = 04,
Pb = Pr,» and solving for the eigenvalues we find

Or=6— (2, + 13 i\/ n (02, —pp,) "+ (5 — ZApbOpao) : (26)

The stability of the zero state (a = b = 0) can be calculated directly from (14); it is stable
for ¢ < —y /2. The stability of rectangular and oblique patterns is inferred from (26). For
rectangular patterns, given by (22), we find the stability range —y /2 <¢ <y /(A —1). For
oblique patterns, given by (25), we find the stability range ¢ > y /(A — 1). These results are
summarized in the bifurcation diagram shown in figure 3.

The solutions representing the rectangular patterns and the oblique patterns are constant,
which implies that both are locked at half the forcing wavenumber, k, = k¢/2. Unlike the
wavenumber locking of stripe patterns, which is restricted to a detuning range that scales
with the forcing strength and therefore is very narrow for weak forcing, rectangular and
oblique patterns are resonant over a wide and continuous detuning range, |v| ~ O (1), even
for diminishingly small forcing intensities y. This wide locking range results from the
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Figure 4. Phase diagram in the v—¢ parameter plane showing the regions of
stable resonant patterns. The resonance range of stable 2:1 stripe patterns
(shaded region) is much narrower (|v| ~ O(4/¢)) than the resonance ranges of
rectangular and oblique patterns (|v| ~ O (1)). Stripes and rectangular or oblique
patterns coexist for v < 0 and within the stripe stability region. The horizontal
boundaries for the stability of rectangular and oblique patterns are found from
(26). Parameters: kg =1, y = 0.1 and A = 2.

freedom of the system to build a wave vector component in the y-direction while keeping the
x-component locked to half of the forcing wavenumber k, = k¢/2. This result could be
significant for applications where periodic forcing is used as a means of controlling the
wavenumber of a pattern; adding a second spatial dimension will dramatically increase the
range over which the wavenumber can be controlled. Figure 4 shows the boundaries of stable
2 : 1 wavenumber-locked stripe solutions along with the parameter ranges for rectangular and
oblique patterns.

5. Wavenumber locking of traveling patterns

To what extent are the results found in the previous section valid for the case where the
unforced system supports traveling waves rather than stationary patterns? Are wavenumber-
locked patterns stationary or traveling, and if they travel, in what direction? To address these
questions we consider a system with one-dimensional traveling wave solutions in the x-direction
(when unforced) with spatially periodic forcing also in the x-direction. The amplitude equations
for this case are

a, = (¢ —iw)a+ (k,d, +k,d,)a + %b* — (lal*a +r|b|*a), (27a)
b, = (¢ —iw)b + (k,d, — k,d,)*b + %a* — (|b]*b +Alal*b), (27b)

where w = ck, and c is the traveling-wave speed of the unforced pattern which we assume to

be small (of order ¢). These equations, with A = 2 can be derived from (1) with ¢ # 0.
Expressing the amplitudes in polar form as before, a = p,exp(ia) and b = p,exp(iff), we

find that the equations for the moduli p, and p, and for the phase difference ¥ = o — B remain
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Figure 5. Phase diagram for weakly forced systems supporting traveling stripes.
In contrast to the ¢ = 0 case of the forced SH model (1) (figure 4), when ¢ # 0
the stationary rectangular patterns occupy a smaller region, the oblique patterns
travel and occupy a larger region, and the zero-state can lose stability directly to
oblique patterns. When the forcing is sufficiently weak, the stripe patterns travel
and occupy the same region as the stationary stripe patterns do in the unforced
system. Parameters: ko = 1, y = 0.1 and ¢ = 0.07.

unchanged but the equation for the phase variable ¢ = o + 8 is now

o =—20-% (ﬁ + &> $in(g). (28)
2 Pa  Pb
Looking for stationary solutions of (28) we find
k 1 »
sing = ——r | R=—<@+p—). (29)
14 R 2 Pa  Pb
Of the two solutions for ¢ only
@9 = —arcsin(cks/y R), (30)
is stable (see earlier discussion). Defining an effective forcing strength
. c2k?
7 =ycos =1y~ —, G1)

the equations for p, and p, become identical to (19) with y replaced by y. Rectangular patterns
then appear at ¢ = —y /2 and lose stability to oblique patterns at ¢ = y /(A — 1). Note that for
rectangular patterns ¥, = 0, despite the fact that sin(¢) # 0, because p, = p,. Since constant
Y implies that the phases o and S are constant as well, the rectangular patterns are stationary
and wavenumber locked. Figure 5 shows the regime of stable rectangular patterns. For larger
traveling-wave velocity c the regime of locked rectangular patterns is smaller.

Oblique patterns appear when ¢ > y /(A —1). These patterns are no longer stationary
because p, # pp and ¥, # 0. They do not travel in the x-direction, as the traveling waves in
the unforced system do, but instead in the orthogonal direction y, the direction along which the
continuous translational symmetry is not broken by the forcing. To obtain this result we first
insert the stationary solution (30) of (28) into the equation for yr

Y (Po Pa\ Cke

1,,,:_(___)_59. (32)
2 Pa Pb VR
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Since €2 is constant ¥ () = Q¢ + ¥y where 1, is an integration constant. The phases « and j are
then

= + B = a +8 (33)
o= ) Qp, — ) 0>

where oy = (@ + ¥o) /2, and By = (¢o — ¥o)/2, and the solution form (12) becomes
U X paeiaoeikxx+iky(y+vt) +pbeiﬁoeikxxfiky(y+vt) +c.c., (34)

where v = Q/(2k,). This form describes an oblique pattern traveling in the y-direction with a
wave vector component in the x-direction locked to half the forcing wavenumber, k, = k¢/2.
Since the two symmetric oblique patterns have opposite signs of €2 they propagate in opposite
directions. The region of stable traveling oblique patterns is shown in figure 5. Note that the
oblique patterns may form directly from the zero state if ¢ is large enough.

When the detuning v is positive the two-dimensional resonant patterns cease to exist but
stripe patterns may exist as they do for the case ¢ =0 where the unforced system supports
stationary patterns. These patterns are described by an amplitude equation similar to (4) but
with an additional term —ick, on the right-hand side. A linear stability analysis of the zero state
A =0 gives the stability boundary & = 4k3v? for sufficiently weak forcing, y < 2|c|ko. Above
this threshold, which coincides with that of the unforced system, traveling stripes appear. The
existence range of these patterns for positive detuning is described by the shaded area in figure 5.
For small negative detuning these patterns coexist with resonant two-dimensional patterns.
Direct numerical studies of the forced traveling SH equation support these results but also
indicate the possible coexistence of unlocked traveling oblique patterns whose wave velocity
has a nonzero component in the x-direction, unlike the locked traveling oblique patterns.

6. Pattern diversity

The leading-order solution form (12), where the amplitudes a and b represent rectangular
patterns (22) and oblique patterns (25), can be used to map the two-dimensional patterns in
the e—v plane. As figure 6 shows, both rectangular and oblique patterns change from stripe
patterns along the x-direction, in the limit v — 0, to stripe patterns along the y-direction,
in the limit v — —kj. Accordingly, the pattern’s wave vector component in the x-direction
is continuously controllable by the forcing from k, =ky (v=0) to k, =0 (v = —ky). At
v = —k(/4 the rectangular patterns are square and the oblique stripes are exactly diagonal. In the
range ¢ > y /(A — 1), the oblique patterns become oblique stripes. Direct numerical solutions
of the forced SH equation (1) confirm these results as figure 7 shows.

The pattern boundaries in figure 4 indicate a bistability range of stripes and rectangular
patterns for ¢ < y /(A — 1), and a tristability range of stripes with the two symmetric oblique
patterns for ¢ > y /(A — 1). These multistability ranges allow for asymptotic spatial mixtures of
different patterns [42]. For ¢ < y /(A — 1) asymptotic spatial mixtures of stripe and rectangular
patterns are found whenever the domain walls that separate the two patterns are perpendicular to
the stripe direction. Such domain walls are close approximations of stationary transverse Ising
fronts [52]. Domain walls aligned parallel to the stripes propagate to reduce and eliminate stripe
domains, leaving an asymptotic rectangular pattern. Fronts may also form between stripes and
oblique patterns but in that case the fronts may be either aligned perpendicular or parallel to the
stripes.
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Figure 6. Solutions of the leading order approximation (12) show the diversity
of patterns. As v is varied from —ky — O (left to right) the pattern changes
from horizontal stripes, to squares or oblique patterns, and then to vertical
stripes through a continuous variation in k, from O to ky. The patterns in (a)—(1)
correspond to the parameters at the points specified in figure 4. Parameters:
c=0,A=2, k=1, =0, y=0.1, v=[-1.0,-0.777, —-0.2, —0.05, 0.1],
¢ =1[0.05,0.12,0.3, 1] and x =y = [0, 107 ].

When the unforced system supports traveling waves, the two symmetric oblique patterns
in the forced system travel in opposite directions along the y-axis. This suggests the possible
existence of sink and source solutions that separate domains of incoming traveling waves or
outgoing traveling waves. Such solutions of (1) (with ¢ > 0) indeed exist as figure 8 shows.

We restricted the discussion of wavenumber locking of one-dimensional stripe patterns to
the 2 : 1 resonance, where k¢ =~ 2k, and found that the locking range overlaps with that of two-
dimensional patterns. By decreasing the forcing wavenumber k¢ from 2k to ky other resonances
of stripe patterns, such as 3:2 and 1: 1, may be encountered. Overlapping regions of these
stripe patterns with the resonance range of two-dimensional patterns, can give rise to additional
types of spatially mixed patterns.

7. Conclusion

One-dimensional spatial periodic forcing of two-dimensional pattern forming systems can
strongly effect pattern formation. Forcing close to an exact 2 : 1 resonance can stabilize resonant
stripe patterns and even extend their existence range. However, when the forcing wavenumber
is too small (relative to 2k,) two-dimensional rectangular patterns appear from the zero state,
which further destabilize to a pair of oblique patterns. These two-dimensional patterns are
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II

Figure 7. Numerical solutions of stationary resonant patterns in (1) obtained
by varying the forcing wavenumber v and driving ¢. The pattern forms exactly
match those of the amplitude equations for the same parameters. The patterns in
(a)—(1) correspond to the parameters at the points specified in figure 4. Patterns
(c), (g) and (k) coexist with stable stripe patterns (not shown) at the same
parameters. Parameters: ¢ =0, ko =1, y =0.1, v=[—-0.7, 0.3, —0.1, 0.1],
e =10.05,0.12,0.3] and x = y = [0, 207 ].

resonant in the sense that their wave vector components in the forcing direction are exactly half
the forcing wavenumber. To compensate for the total wavenumber they develop wave vector
components in the orthogonal direction. When the unforced system supports traveling stripes,
rather than stationary stripes, resonant rectangular and oblique patterns still appear. However,
while the rectangular patterns are stationary and occupy a smaller domain in the (¢, v) parameter
plane relative to the stationary-stripe case, oblique patterns travel and occupy a larger domain
in this parameter plane. Surprisingly, the direction of travel for oblique patterns is orthogonal to
the direction of stripe patterns in the unforced system.

The results predicted in this study can be tested in controlled experiments. Two candidate
systems are Rayleigh—Bénard convection forced by modulating the shape of the bottom
plate [14], and the light-sensitive CDIMA chemical reaction forced by masked illumination
of the reaction cell [12]. A possible environmental application of this study is the restoration of
banded vegetation in arid and semi-arid regions. Vegetation on hill slopes often self-organizes to
form stripe patterns oriented perpendicular to the slope direction [55, 56], which slowly migrate
uphill. A common restoration practice of degraded vegetation is based on water harvesting by
means of parallel contour ditches that accumulate runoff and along which the vegetation is
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t = 1980 . t = 2020 t = 2060

A

Figure 8. Counterpropagating oblique waves in the forced SH equation (1)
with ¢ > 0. (top) Four frames at different times show the pattern dynamics.
The waves in the center propagate downward and the waves near the top and
bottom propagate upward producing a corresponding wave sink and wave source.
(bottom) A space—time plot of the same data for a slice along the y direction in
the center of the pattern above. The source near the top of the domain and the
sink near the bottom are clearly visible. The vertical lines correspond to the time
of the pattern images in the frames above. Parameters: ¢ = 0.5, ko =1, y = 0.1,
v=—-0.1,6 =0.05and x = y = [0, 207].

planted. The contour ditches, which increase the biomass growth rate because of the higher
soil-water content they induce [57, 58], can be regarded as multiplicative periodic forcing as
modeled in (1).
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Appendix A. Amplitude equations for two-dimensional patterns

We consider (1), assuming ¢ < 1 and y := ¢I" with I' ~ O (1). Expanding the solution u as
u=81/2u1+8u2+83/2u3+---, (A.1)
and rescaling time and space as

X=¢"x, Y=¢"y, T=et, (A.2)
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we find at order &'/?

(37 +0; +kg)*u; =0. (A.3)
To describe rectangular patterns we consider a solution of this equation in the form
uy =a(X, v, T)e ) 4 p(X, v, T)e'® =" 1 cc., (A.4)

where k, = ko + v and k, = «/—2kov — V2. At order ¢ we find that u, satisfies the same equation
as u1, and choose the solution u, = 0. At order /% we obtain

(07 +02 +kg)us = _8_T1 +uy —u; —4(3,9x + 3,3y ) us + Ty cos[2(ko +v)x]. (A.5)
Substituting (A.4) into (A.5), we obtain
(02 + 8y2 +kd) us = a, et g e Y 4 ¢ ¢+ nonresonant terms, (A.6)
where
o, = ar —a+3(ala+2|b*a) — 4(k,dx +k,dy)*a — gé* (A.7a)
a_ =br —b+3(b|*b+2|a|*h) — 4(k,dx — kydy)*b — ga (A.7b)

Solvability of (A.6) requires the elimination of the resonant terms exp(ik,x £ ik,y) from the
right-hand side. Setting the coefficients of these terms to zero (ax =0), going back to the
original space and time variables (x, y, t), and denoting a = \/ea, b = \/eb we obtain (13).
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